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a b s t r a c t 

The identification of sources of advection–diffusion transport is based usually on solving 

complex ill-posed inverse models against the available state-variable data records. How- 

ever, if there are several sources with different locations and strengths, the data records 

represent mixtures rather than the separate influences of the original sources. Importantly, 

the number of these original release sources is typically unknown, which hinders reliability 

of the classical inverse-model analyses. To address this challenge, we present here a novel 

hybrid method for identification of the unknown number of release sources. Our hybrid 

method, called HNMF, couples unsupervised learning based on Non-negative Matrix Fac- 

torization (NMF) and inverse-analysis Green’s functions method. HNMF synergistically per- 

forms decomposition of the recorded mixtures, finds the number of the unknown sources 

and uses the Green’s function of advection–diffusion equation to identify their characteris- 

tics. In the paper, we introduce the method and demonstrate that it is capable of identify- 

ing the advection velocity and dispersivity of the medium as well as the unknown number, 

locations, and properties of various sets of synthetic release sources with different space 

and time dependencies, based only on the recorded data. HNMF can be applied directly to 

any problem controlled by a partial-differential parabolic equation where mixtures of an 

unknown number of sources are measured at multiple locations. 
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1. Introduction 

In the last several decades one of the most important research topics in the hydrogeological sciences has been the con-

taminant transport in subsurface environment [1,2] . The research has been driven by substantial challenges associated with

prediction and remediation of contaminant plumes in the environment. Most of these challenges are due to uncertainties

associated with contaminant sources (e.g. source locations, emission strengths, release transients, etc.) as well as contam-

inant migration (e.g., velocity, dispersivity, etc., related to aquifer and contaminant transport properties). Determining the
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number of the contaminant sources, their locations and physical properties, is an important task that yields valuable infor-

mation needed for prediction of the fate and transport of contaminant, the hazard and risk assessments, and remediation.

Most often, the information about the contamination sources and contaminant migration in the medium (an aquifer) is lim-

ited or not available, which explains the increasing use of complex numerical inverse model analyses [3–9] and multivariate

statistical and machine learning techniques [10–14] . These methods address the need for accurate predictions of perpetually

increasing number of environmental management problems caused by contamination groundwater-supply resources [15] . 

The existing methods for contaminant source identification rely on the available contamination site observations. The

tools for observation of contaminant plume are various types of detector (sensor) arrays recording the spatiotemporal be-

havior of the contaminant plumes. The detectors are typically monitoring wells which are sampled with some temporal

regularity. 

Importantly, these detectors typically measure mixtures of signals originating from an unknown number of contaminant

sources, which presents a considerable challenge to modeling. The mixing ratios of the different sources at each sensor are

also usually unknown. All these uncertainties hamper the reliability of the standard inverse-model analyses. An alternative

approach is to use model-free Blind Source Separation (BSS) methods, commonly applied to signal processing problems. The

BSS methods, however, do not exploit the available understanding of the physics of the contaminant processes. 

To address this problem we have developed and present here a new hybrid inverse method, which we call HNMF, capable

of identification of the unknown number and physical properties of release sources by combining inverse methods and ma-

chine learning algorithms. HNMF is utilizing (a) the Green’s function of the corresponding partial-differential equation that

governs the physics of the monitored process (advection–diffusion equation in the case of contaminant transport) and (b) a

BSS method [16] , based on Non-negative Matrix Factorization (NMF) [17] , combined with a custom-made semi-supervised

clustering algorithm, used to un-mix the observations and identify the release sources. 

To validate HNMF we generate several synthetic datasets, representing various problem settings. We generated four sets

with different number of point-like instantaneous sources in infinite medium, recorded by different number of detectors,

and three sets of sources with more complicated space and time dependencies, including sources with a constant release

rate, and sources with finite sizes. We also consider processes based on point-like instantaneous sources in a medium

bounded by a reflecting boundary. For all these cases, HNMF accurately determines the number, locations, and physical

characteristics of the unknown contaminant sources from observed samples of their mixtures, without any additional infor-

mation about the sources or the physical properties of the medium where the contaminant transport occurs. The method

also estimates the transport properties of the medium, such as the advective velocity and dispersivity. Furthermore, HNMF

can be also applied with small or no changes to many typical problems involving heat transport (see, e.g., Refs. [18,19] ). 

By combining model-free machine learning BSS method with inverse-problem analysis we are able to solve problems,

which present a significant challenge for usual BSS methods and to classical inverse methods, but are very common in

practical applications: an unknown number of sources spreading signals that change their form as they propagate, either

because of the fundamental nature of the propagation process, or because of the properties of the medium. 

2. Statement of the problem 

The main goal of the paper is to present a novel hybrid method, which we call HNMF, that combines the Green’s func-

tion of the advection–diffusion equation with a semi-supervised adaptive machine learning approach for identification of

contaminant sources in porous media, based on a set of observations. We assume that the observations are taken at several

detectors, dispersed in space, and monitoring contaminant transients over a period of time. If there are multiple contami-

nation sources in the aquifer, each detector registers a mixture of contamination fields (plumes) originating from sources at

different release locations. It is assumed that each contaminant source is releasing the same geochemical constituent that is

mixed in the aquifer and the resultant mixture is detected at the observation points (detectors). If each source was releasing

different geochemical constituents similar to our methodology can be applied with minor adjustments. We also assume that

the geochemical constituent are conservative (non-reactive) and their transport is not impacted by geochemical reactions or

other fluid/solid interactions in the porous media where the flow occurs. Our objective is to identify the unknown number,

release locations and physical parameters of the original contamination sources. This objective requires first to decompose

the recorded mixtures to their constituent components. This decomposition allows us to use the Green’s function of the

advection-diffusion equation to extract the physical parameters, location coordinates and time dependence of the sources.

In the rest of this section, we present the general mathematical formulation of the problem and introduce the notations we

are going to use. 

2.1. Advection–diffusion equation 

The transport of solute in a medium is described by linear partial-differential parabolic equation [20] : 

∂C 

∂t 
= � ( D · � C) − � · (u C) + LC + Q . (1)

This equation describes the rate of change of the concentration of the solute/contaminant C ( x , t ), defined in some (space and

time) domains: x ∈ R 

d and t ∈ [ t init , t final ] . The matrix D is the hydrodynamic dispersion, which is a combination of molecular
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diffusion and mechanical dispersion (in porous media the latter typically dominates), and u is the advective velocity. Q is a

source function, representing possible sinks and sources of contaminants. The term involving L describes possible chemical

transformations of the contaminant. In the following, we will neglect this term, assuming that L = 0 . This type of equation

also describes heat transport in various media [21] , and the procedure presented here can be applied to this problem as

well. 

For simplicity, we will consider a (quasi-)two-dimensional medium, so x ≡ (x, y ) ∈ R 

2 ; we assume that the third dimen-

sion z is a constant, z = z 0 , and that the extend along z of the aquifer is small, and thus C is uniformly distributed in that

direction. By assuming that both u and D are independent of x and choosing the x -axis along the direction of u , (1) be-

comes: 

∂C 

∂t 
= � (D · � C) − � · (u C) + Q ≡ D x 

∂ 2 C 

∂x 2 
+ D y 

∂ 2 C 

∂y 2 
− u x 

∂C 

∂x 
+ Q . (2) 

Note that D x � = D y because the advection motion causing mechanical dispersion breaks the isotropy of space. 

To uniquely specify a solution of (2) , we need to impose initial and boundary conditions. We assume that there is no

contamination before the sources start emitting, and the initial condition is C ( t < min (t s )) = 0 . Different types of boundary

conditions (Dirichlet, Neumann or Cauchy) can be appropriate, depending on the type of the boundary itself (inflow, outflow

or impenetrable). For simplicity, we will focus mainly on the case of an infinite two-dimensional space, assuming that the

aquifer is large enough so its boundaries do not affect the distribution of C (at least at the time-scales of interest). In this

case, the boundary condition is given by C → 0 as x → ∞ . 

Since (2) is a linear partial differential equation, we can write the solution with specified source term: 

C(x, t) = 

∫ 
d t ′ d x 

′ G (x − x 

′ , t − t ′ ) Q(x 

′ , t ′ ) , (3) 

where G ( x , t ) is the Green’s function of the diffusion–advection equation, and the sources are described by Q ( x , t ). The

Green’s function is solution of (2) with (space and time) point source: 

∂G 

∂t 
= D x 

∂ 2 G 

∂x 2 
+ D y 

∂ 2 G 

∂y 2 
− u x 

∂G 

∂x 
+ δ(x ) δ(y ) δ(t) . (4) 

Here, the source is located at x s = (0 , 0) , it is active at t s = 0 , and δ(...) denotes the Dirac delta-function. The solution of

(4) is well known [22] , and can be written as: 

G (x , t) = 

1 

4 π
√ 

D x D y t 
e −

(x −u x t) 
2 

4 D x t e 
− y 2 

4 D y t , (5) 

In the case Q represents a collection of localized in space and time sources, it can be written as Q ∼ ∑ 

q s δ(x − x s ) δ(y −
y s ) δ(t − t s ) , where s indexes the contamination sources, x s , y s and t s refer to the coordinates and release time of the s th

source and q s specifies its strength. Then the integral in (3) can be replaced with a sum over s : 

C(x , t) = 

N s ∑ 

s =1 

q s G (x − x s , t − t s ) , (6) 

where N s is the total number of sources. 

Despite the fact that so far we have considered explicitly only point-like instantaneous sources, the method can be

straightforwardly applied to sources with more complicated space and time dependency: Q = 

∑ N s 
s =1 

q s (x , t) . In this case the

solution of (2) can be written as: 

C(x , t) = 

N s ∑ 

s =1 

∫ 
d x 

′ dt ′ G (x − x 

′ , t − t ′ ) q s ( x 

′ , t ′ ) , (7) 

where q s ( x , t ) now encodes the extend (in space and time) of the s th source. If the above integral (with known functional

dependencies q s ( x 
′ , t ′ )) can be solved analytically, the result for C ( x , t ) reduces to a closed-form expression (cf. [22] ). How-

ever, even if this is not the case, the method we present here works for C ( x , t ) obtained by using a numerical integration. 

2.2. Blind Source Separation (BSS) methods 

In a typical problem that requires BSS methods [16] , the observed data matrix, V , ( V ∈ M N;T (R ) ), is formed by a linear

mixing (at each one of the N detectors) of N s unknown original signals presented in the sources’ matrix, H , ( H ∈ M N s ;T (R ) ),

blended by an also unknown mixing matrix, W , ( W ∈ M N;N s (R ) ), where R denotes the set of real numbers. Thus, at a given

detector n at a moment of time t , we can write: 

V n (t) = 

∑ 

s 

W n,s H s (t) + εn (t) , (8) 

where εn (t) ∈ M N;T (R ) , and denotes presence of possible noise or unbiased errors in the measurements (also unknown).

The problem is usually solved in a temporally discretized framework, and the goal of a BSS method is to identify the N s 
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original sources. Since both factors H and W are unknown, and even their size N s (i.e., the number of sources mixed at each

detector record) is unknown, the main difficulty in solving this problem is that it is under-determined. 

When V is a non-negative matrix, one of the most widely-used BSS methods is NMF – an unsupervised learning method,

created for parts-based representation [24] in the field of image recognition [17,23] , that was successfully leveraged for

decomposition of mixtures formed by various types of signals [25] . NMF enforces a non-negativity constraint on both the

original signals in H and their mixing components in W , and can successfully decompose large sets of non-negative obser-

vations, V , by leveraging, for example, the multiplicative update algorithm [17] . However, the NMF algorithm requires prior

knowledge of the number of the original sources. 

2.3. The HNMF method 

If we wanted to identify signals originated from a number of known sources, which mixtures are recorded by set of

detectors, then the explicit form of the Green’s function, (5) , could be enough to solve this problem. However, here we are

aiming to solve a more complex inverse problem: to determine the characteristics of an unknown number of sources based

on the mixtures of signals recorded by multiple detectors positioned at arbitrary locations. Apparently this is a problem that

requires a BSS method, and because the signals are non-negative, NMF appears to be a good match for the task. However,

despite their advantages, none of the conventional BSS methods are directly appropriate for this task. The issue is in the

nature of the process of the advection–diffusion transport itself. 

Indeed, while some physical processes (e.g., processes subject to dispersionless wave equation) permit transport in which

the signals keep their form undistorted as they travel through the medium, the parabolic equation describes diffusion com-

bined with advection. To examine the consequences of this, let us consider a single point source. Detectors situated at dif-

ferent distances from the source will record signals, differing in shape and time dependence. This distortion is difficult to be

treated by the model-free BSS methods that do not exploit the available scientific understanding of the advection–diffusion

transport. 

The hybrid method we are proposing here takes advantage of the knowledge of the physical processes involved in the

advection–diffusion transport, by using the explicit form of the Green’s function of the advection–diffusion equation, and

estimates the ( a priori unknown) number of release sources, based on the solutions’ robustness. 

3. Methodology 

The method we propose in this work has two well-separated stages: (a) Non-negative Matrix Factorization based on non-

linear minimization and explicit type of the Green function and (b) custom semi-supervised clustering algorithm, leveraged

to estimate the unknown number of sources based on the robustness of the solutions. 

3.1. Non-negative matrix factorization 

Based on the Green’s function of advection–diffusion equation, we can use the explicit form of the original signals at

times t ( t = 1 , 2 , . . . , T ) and at the locations of each of the N detectors: ( x n , y n ), n = 1 , 2 , . . . , N. These signals originate from

sources located at points with coordinates: ( x s , y s ), s = 1 , 2 , . . . , N s , with source strengths q s . Therefore, we have to solve a

NMF-type of minimization: 

V n (t) = 

N s ∑ 

s =1 

W s H s,n (t) + εn (t) ; t = 1 , 2 , . . . , T (9)

where, 

W s ≡ q s � 0 , (10)

H s,p (t) = 

1 

4 π
√ 

D x D y t 
e −

((x s −x n ) −u x t) 
2 

4 D x t e 
− (y s −y s ) 

2 

4 D y t � 0 . (11)

and ε is the Gaussian noise or unbiased measurement errors. As explained earlier, the record at each detector is a super-

position of the contributions from all N s sources. The coordinates of each of the detectors, ( x n , y n ) and the functional form

of the Green function, G s are assumed known, while the parameters q s , x s and y s , as well as the contaminant transport

characteristics u x , D x , and D y are the unknown parameters. The goal of the minimization procedure is to obtain the physical

parameters and transport characteristics that reproduce (with some accuracy) the observed data, rather than to reconstruct

an entirely unknown functional dependence. This considerably simplifies the problem, and for many cases, the minimiza-

tion can be carried by well-known nonlinear least-squares procedures (for example, Levenberg–Marquardt algorithm) as
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implemented in the open source code MADS ( http://mads.lanl.gov ; [26,27] ) and applied to minimize the cost function O , 

O = 

N ∑ 

n =1 

T ∑ 

t=1 

( 

V n,t −
N s ∑ 

s =1 

W s H s,n,t 

) 2 

where, W s � 0 ; H s,n,t � 0 ;
(12) 

The minimization of the l 2 cost function assumes that each measurement at a given space-time point is an independent

Gaussian-distributed random variable, which corresponds to the white noise, ε. If each detector has its own and different

(possibly time-dependent) measurement error, minimizing the cost function in (12) should be replaced by a weighted least-

squares procedure, where the cost at each point is weighted by the inverse square of its measurement error. Note that since

Gaussian functions form a basis in the functional space, none of them can be presented as a linear combination of the

others, which guarantees a uniqueness of the minimum of the cost function in (12) [28] . 

However, the main problem is that the unknown number of contamination sources N s cannot be extracted directly by

minimizing O in (12) . Indeed, this number has to be already known in order to build the explicit form of the solution. 

3.2. Clustering algorithm 

If the number of sources N s is known, the method described in the previous section would be all that is needed: from

the best solution of the minimization procedure (with fixed N s ), we would extract the desired estimates of the physical

parameters, and thus solve the inverse problem. Unfortunately, the true number of sources is typically unknown and we

have to estimate it solely from the observations. Moreover, the solution of (12) , is based on some (often highly inaccurate)

initial guess for the unknown parameters. A naive approach would be to explore all possible solutions applying the nonlin-

ear minimization described in the previous section for an entire range of a possible number of sources, and then use the

solution with the smallest reconstruction error to estimate N s . However, this is obviously a flawed approach – over-fitting

will certainly lead to over-estimation of the number of sources; more free parameters will generally lead to a better fit, ir-

respective of how close the estimated number of sources is to the real one. To determine the optimal value of the unknown

number of sources from the observations, we use a custom semi-supervised clustering algorithm. 

The original NMF algorithm also requires prior knowledge of the number of the original sources. To deal with this in-

determinacy different extensions of the method have been proposed [29–31] . Most of them use Bayesian model selection

framework (see, e.g., Ref. [29] ) that requires running computationally intensive Monte Carlo simulations. However, recently

it was demonstrated that by coupling NMF with a k-means clustering the number of the original sources can be estimated

based on the reproducibility of the solutions. This approach was introduced to decompose the largest available dataset of

human cancer genomes [32] , and then extended for decomposition of physical pressure transients [33] . Although heuristic in

nature, this method has proven to be accurate and reliable; it also has an important practical advantage that it is relatively

easy to implement and use. 

Here we utilize a similar protocol, based on a custom semi-supervised clustering algorithm, to determine the optimal

number of sources. Specifically, our protocol explores consecutively all possible numbers of original sources, i = 1 , 2 , . . . , N

(the number of sources is assumed to be less than the number of detectors – N s ≤ N ), and then estimates the robustness

as well as the accuracy of the minimization of solutions with different i . As a first step, HNMF performs N sets of M mini-

mizations, called runs, where each minimization in a given run is using the same number for the number of sources, with

random initial guesses for the unknown parameters. Each run results in a set U i , containing M solutions of the minimization.

If we denote the derived in p th minimization coordinates and amplitudes of the i sources (x 
p 
i 
, y 

p 
i 
, q 

p 
i 
) by (x, y, q ) p 

i 
; and the

corresponding set of advection velocities and hydrodynamic dispersion components, ( u p x i , D 

p 
x i , D 

p 
y i 

) , by (u x , D x , D y ) 
p 
i 
, for the

set of solutions, U i , of the whole run of minimizations with i sources, we will have, 

U i = ([(x, y, q ) 1 i , (u x , D x , D y ) 
1 
i ] , . . . , [(x, y, q ) M 

i , (u x , D x , D y ) 
M 

i ]) (13)

where M is the number of minimizations. Next, HNMF leverages a semi-supervised clustering to assign each of the compo-

nents of the M resultant 3 ∗i -component vectors, { h i 
1 

= (x, y, q ) 1 
i 
, . . . , h M 

i 
= (x, y, q ) M 

i 
} to one of the i clusters containing the

coordinates and amplitudes of the sources. This algorithm is a k -means clustering with the additional constrain that keeps

the number of solutions in each cluster equal. For example, for the case of i = 2 , after a run with M = 10 0 0 simulations

(performed with random initial guesses for the unknown parameters), each of the two clusters will contain 10 0 0 solutions.

Note that we have to enforce the condition for the clusters to contain an equal number of solutions since each simulation

contributes exactly one solution for each physical parameter. During clustering the similarity between two elements h i 
1 

and

h i 
2 

is measured using the cosine distance (also known as cosine similarity) [34] , ρ(h i 
1 
, h i 

2 
) , 

ρ(h 

i 
1 , h 

i 
2 ) = 1 −

∑ i 
i =1 h 

i 
1 ,i 

h 

i 
2 ,i √ ∑ i 

i =1 ( h 

i 
1 ,i 

) 2 
√ ∑ i 

i =1 ( h 

i 
2 ,i 

) 2 
. (14) 

The main idea for estimating the unknown number of sources is to use the separation between the clusters as a measure of

how good is a particular choice of i . The intuitive reasoning behind it is as follows. In the case of the underfitting, i.e., for

solutions with i less than the actual number of sources, the clustering could be good; for example, several of the sources

http://mads.lanl.gov
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could be combined to produce a “super-cluster”. However, the clustering will break down significantly in the case of over-

fitting, when i exceeds N s . Indeed, in this case (even if the average reconstruction error of the solution is small), we do not

expect the solutions to be well clustered since there is no unique way to reconstruct the solutions with i > N s , and at least

some of the clusters are artificial, rather than real entities. Thus, the separability of the clusters can be used as an indicator

of the solution robustness and applied to identify the number of sources. 

To quantify this behavior, we utilize Silhouette width of the clusters [35] , which measures how well the solutions are

clustered by comparing the average distance within a cluster with the average distance to the next closest cluster. After

the clustering, we compute the Silhouette widths of the clusters and construct their average Silhouette width. This average

Silhouette width is a quantitative measure of how separable, and thus how reproducible are the average solutions (the

centroids of the clusters) for each i . 

In addition to the average Silhouette width, we use the reconstruction error from (12) to evaluate the accuracy of the

average solutions. In general, the solution accuracy increases (while the solution robustness decreases) with the increase of

the number of unknown sources. Thus, the average Silhouette width and the average reconstruction error for each of the

i cluster solutions can be used to estimate the optimal number of contaminant sources, N s . Specifically, we select N s to be

equal to the number of sources that accurately reconstruct the observations (i.e., their average reconstruction error is small

enough) while clustering of solutions is sufficiently robust (i.e., the average Silhouette width is close to 1). 

An automatic selection procedure can be also formulated with the help of the Akaike Information Criterion ( AIC ) [36] .

We compare the models with different number of sources i by calculating (for each i separately) the value: 

AIC = 2 p − 2 ln (L ) = 2[ i (3 + N)] + N t ln 

(
O 

(i ) 

N t 

)
(15)

here (as usual) we disregarded terms that do not dependent on i and thus are irrelevant. L ( i ) is the likelihood functions

of the model with given i , and we define it to be the average reconstruction error O 

( i ) of the solutions we have kept in

the clustering procedure for this particular i : ln (L (i ) ) = −(N t / 2) ln (O 

(i ) /N t ) ( N t = N ∗ T , is the total number of data points;

the product of the number of detectors N by the number of time observations T ). The degrees of freedom of a model

with i sources is given by p = i (3 + N) + 3 , because each new source comes with 3 + N parameters (2 spacial coordinates

plus the source strength, as well as N mixing coefficients), in addition to the 3 parameters characterizing the medium

(because their number is fixed they can be discarded just like the other i -independent AIC terms). The AIC is a standard

measure of the relative quality of statistical models, which takes into account both the likelihood function and the degrees

of freedom needed to achieve this level of likelihood. Choosing the model that minimizes AIC helps avoid over-fitting. It

is also important to note that the AIC value depends on the clustering procedure since we calculate L ( i ) using the physical

parameters determined by the centroids of the clusters. 

Based on the above approach, we have developed the HNMF algorithm for identifying the number and characteristics of

contaminant sources subject to advection–diffusion equation. 

4. Results 

4.1. The pseudo-code of the proposed HNMF Algorithm 

The following pseudo-code implements the proposed HNMF algorithm as described above Algorithm 1 . 
Algorithm 1 HNMF pseudo–code. 

1: Get the observation matrix X 

2: Set the maximum number of unknown sources, N 

3: Set the maximum number minimizations for given number of sources, M 

4: for i = 1 to N do 

5: Create empty list U i (Eq. 13) 

6: for j = 1 to M do 

7: Generate random initial guesses for [ x , q, u , D ] and corresponding W and H (Eqs. 10 and 11) 

8: Minimize O 

j 
i 

(Eq. 12) via a nonlinear least-squares solver and find solution for [ x , q, u , D ] 
j 
i 

9: Append the solution to U i 

10: end for 

11: Sort the elements of U i : [ x , q, u , D ] 
j 
i 
, j = 1 , . . . , M, by the values of reconstruction of O 

j 
i 
, and remove the worst 10% 

12: Do k -means clustering for all elements, [ x , q, u , D ] 
j 
i 
, j = 1 , . . . , M, of U i with i clusters 

13: Calculate Silhouette values, S i , and clusters’ centroids [ x , q, u , D ] cent 
i 

14: Calculate the O 

cent 
i 

(Eq. 12) as a function of the centroids 

15: end for 

16: for i = 1 to N do 

17: Calculate AIC( i , O 

cent 
i 

) (Eq. 15) for average Silhouettes: S i > 0 . 7 

18: end for 
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Fig. 1. Test setups representing arrays of detectors (blue dots) and sources (red dots). On panel (A), there are nine detectors and four sources. On panel 

(B), there are five detectors and three sources (For interpretation of the references to color in this figure legend, the reader is referred to the web version 

of this article.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Synthetic data 

To illustrate HNMF method, we apply it to identify sources from seven distinct synthetic data sets. We consider two gen-

eral detector/source configurations as represented in Fig. 1 . To make the problem more realistic, we set the physical param-

eters of the sources and the medium to be in ranges consistent with these observed at actual groundwater contamination

sites. In both setups, the distances are measured in kilometers, the advection velocity is u = 0 . 05 km/year, and its direc-

tion was chosen to be along the x -axis of the coordinate system. We have assumed a significant anisotropy in hydrological

dispersion: D x = 0 . 005 km/year 2 and D y = 0 . 00125 km/year 2 (thus, D y /D x = 0 . 25 , due to the presence of advection and me-

chanical dispersion). We also assume t 0 (the time of source activation) for all sources to be: t 0 = −10 years (10 years before

the start of data collection). We consider a time span of 20 years (starting with t = 0 ), with measurements taken four times

per year, so there is a total of 80 time points for each detector. By mixing the sources at each detector with added Gaussian

noise with strength 10 −3 , we construct seven different observation sets (observational matrices) based on the two test con-

figurations presented in Fig. 1 . For the first configuration the source coordinates are: S1 = (−0 . 3 , −0 . 4) , S2 = (0 . 4 , −0 . 3) ,

S3 = (−0 . 3 , 0 . 65) , and S4 = (−0 . 1 , 0 . 25) , and all sources are releasing contaminants with constant concentrations equal

to 0.5 mg/L. In the second configuration ( Fig. 1 B), the source coordinates are: S1 = (−0 . 9 , −0 . 8) , S2 = (−0 . 1 , −0 . 2) , and

S3 = (−0 . 2 , 0 . 6) , with release concentrations: 0.5 mg/L, 0.7 mg/L, and 0.3 mg/L, respectively. 

Starting with random values for the unknown parameters, the minimization procedure runs by adjusting the values of

the unknown parameters until the l 2-norm of the cost function stops changing appreciably, or the maximum number of

iterations is reached. For each possible number of original sources ( i ≤ N ), using the constructed observation matrices, we

performed runs, each with M simulations (typically M ≤ 10, 0 0 0). Then, following the algorithm in Section 4.1 , we gradually

pruned the simulations, guided by the quality of clustering. 

4.3. HNMF estimates 

We first demonstrate the ability of HNMF to determine the unknown number of point-like instantaneous sources and

their parameters in different configurations and in an infinite domain. Next, we fix the number of sources (while keeping

this number unknown in the algorithm) and configuration of the detectors and consider sources with different properties

and boundary conditions. 

4.3.1. Instantaneous point sources in an infinite domain 

The first setup ( Fig. 1 A) has four point sources and nine detectors. In Fig. 2 , we demonstrate the average recon-

struction error and average Silhouette width obtained for different number of unknown sources i . The results unambigu-

ously point to the conclusion that there are four sources, N s = 4 . The average Silhouette width first slightly decreases as

we move from one to three sources, while the reconstruction error remains relatively high; then the Silhouette width

drops sharply as we go from four to five sources ( Fig. 2 ). With the increase in the number of sources from 4 to 5 and

so on, we also observe that the reconstruction error remains almost the same, while the average Silhouette width of
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Fig. 2. Average reconstruction error (black) and the average Silhouette width (red) of the solutions for the case of nine detectors and four sources. The 

rectangle outlines the results related to the optimal number of sources (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.). 

Table 1 

AIC × 10 −3 estimates for a different unknown number of sources i for all the test cases. The values of i which are rejected 

because of bad clustering (Silhouette width < 0.7) are given in parentheses.Values of i which exceed the number of detectors 

are denoted as not applicable (“na”). 

Case i (unknown number of sources) 

1 2 3 4 5 6 7 8 9 

1 source −1.262 −0.714 −0.7 na na na na na na 

3 detectors 

2 sources −1.126 −1.236 ( −1.209) ( −1.192) na na na na na 

4 detectors 

3 sources −0.978 −4.229 −4.47 ( −4.455) ( −4.438) na na na na 

4 sources −5.431 −6.777 −8.229 −10.942 ( −10.794) ( −10.204) ( −9.865) ( −8.209) ( −8.024) 

9 detectors 

 

 

 

 

 

 

 

 

 

 

 

the clusters decreases. The values of the AIC function given in Table 1 also confirm this conclusion. The advection ve-

locity estimated by the method is u = 0 . 050214 km/year, and the dispersion components are D x = 0 . 0 050 012 km/year 2

and D y = 0 . 0012515 km/year 2 , These estimates are in very good agreement with the actual values ( u = 0 . 005 km/year,

D x = 0 . 005 km/year 2 and D y = 0 . 00125 km/year 2 ). The estimated source coordinates and strengths are given in Table 2

and are also very accurate. 

The next three analyses are based on the second setup presented on Fig. 1 B. 

We start with only one point source, S 3, with coordinates (−0 . 2 , 0 . 6) and strength q = 0 . 3 mg/L, and three detectors: D 3,

D 2, D 4. In Fig. 3 , we demonstrate the average reconstruction error and the average Silhouette widths obtained at the end

of the procedure for different number of sources i . The method correctly selects only one source, and the values of the AIC

function given in Table 1 are in agreement. With the increase of the number of possible sources from 1 to 2 and then 3,

we observe that the reconstruction error grows, while the Silhouette width of the clusters decreases. The methods yields

for the advection velocity u = 0 . 050125 km/year, and for D x = 0 . 0 050 02 km/year 2 and D y = 0 . 0 012475 km/year 2 . The source

parameters provided in Table 2 also demonstrate a good agreement between the estimated and the actual parameter values.
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Table 2 

HNMF results presenting estimated model parameters for 1, 2, 3 and 4 sources. 

Case Source q x y 

mg/L km km 

true est. true est. true est. 

1 source #1 0.3 0.299 −0.2 −0.198 0.6 0.599 

3 detectors 

2 sources #1 0.5 0.511 −0.1 −0.100 −0.2 −0.200 

4 detector #2 0.7 0.704 −0.9 −0.899 −0.8 −0.801 

3 sources #1 0.3 0.297 −0.2 −0.201 0.6 0.597 

5 detectors #2 0.5 0.499 −0.9 −0.899 −0.8 −0.744 

#3 0.7 0.704 −0.1 −0.097 −0.2 −0.199 

4 sources #1 0.5 0.502 −0.3 −0.300 0.4 0.400 

9 detectors #2 0.5 0.499 −0.3 −0.300 −0.4 0.403 

#3 0.5 0.500 −0.3 −0.301 0.65 0.650 

#4 0.5 0.510 −0.1 −0.099 −0.25 0.249 

Fig. 3. Average reconstruction error (red) and the average Silhouette width (black) of the solutions for the case of three detectors and a single source. The 

rectangle outlines the results related to the optimal number of sources (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.). 

Fig. 4. Average reconstruction error (red) and the average Silhouette width (black) of the solutions for the case of four detectors and two sources. The 

rectangle outlines the results related to optimal number of sources (For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.). 

 

 

 

 

 

 

Next, we use another combination of sources, S 1 and S 2, and detectors D 1, D 2, D 3, and D 4 ( Fig. 1 B). Again, the algorithm

results convincing identify the correct number of sources, N s = 2 ( Fig. 3 ). The Silhouette widths first slightly decrease as we

move from one to two sources in our reconstruction procedure, and then drop sharply as we go from two to three ( Fig. 3 ).

Combined with the accompanying increase in the reconstruction error between two and three sources, this clearly points

to two sources as the best estimate for N s . The values of the AIC function (given in Table 1 ) support this conclusion. The

estimated parameters are also very good: u = 0 . 05224 km/year, D x = 0 . 0050125 km/year 2 and D y = 0 . 0012496 km/year 2 (see

Table 2 ). 
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Fig. 5. Average reconstruction error (red) and the average Silhouette width (black) of the solutions for the case of five detectors and three sources. The 

rectangle outlines the results related to optimal number of sources (For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.). 

Table 3 

HNMF results of the estimated model parameters for S 1, S 2 sources in the described three different cases described 

above. 

Case Source q x y 

mg/L km km 

true est. true est. true est. 

Spatially-extended instantaneous sources #1 0.7 0.69 −0.9 −0.901 −0.8 −0.802 

#2 0.5 0.45 −0.1 −0.107 −0.2 −0.201 

Point continuous sources #1 0.7 0.7001 −0.9 −0.898 −0.8 −0.802 

#2 0.5 0.4999 −0.1 −0.0996 −0.2 −0.1998 

Point sources in a bounded media #1 0.7 0.704 −0.9 −0.9003 −0.8 −0.8002 

#2 0.5 0.4989 −0.1 −0.1009 −0.2 −0.2001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In our last test case for instantaneous point-like sources, the signals are mixtures of all three sources, S 1, S 2, and S 4, that

are detected by each of the five detectors, forming a regular array Fig. 1 B. As it can be seen in Fig. 5 , while the reconstruction

error becomes quite small and flat for N s > 2, the Silhouette width sharply drops for i > 3. Thus, the most robust answer for

the unknown number of sources i is three. The medium parameters are: u = 0 . 051341 km/year, D x = 0 . 005132 km/year 2 ,

D y = 0 . 0012512 km/year 2 ; Table 2 lists the source parameters. 

The values of the AIC function are given in Table 1 . Based on the results presented in Table 1 and the figures in this

section, the combination of Silhouette width cut-off with the AIC criteria is an accurate method for estimating the unknown

number of sources. This is important observation considering that these metrics (Silhouette width and AIC ) explore very

different properties of the estimated solutions. The Silhouette width focuses on the robustness and reproducibility of the

solutions, while the AIC score evaluates the solutions’ parsimony. 

The true and calculated parameters of the sources for all considered configurations are given in Table 2 . From the values

listed in the table, it can be seen that the HNMF method is remarkably accurate, and the calculated coordinates are within

∼ 2% of their true values. 

4.3.2. Time −dependent and spatially-extended sources and sources in a bounded medium 

Here, we study three synthetic setups that geometrically are based on the combination of two sources, S 1 and S 2, and

four detectors D 1, D 2, D 3, and D 4 ( Fig. 1 B). HNMF successfully identifies the unknown number of sources and their proper-

ties in three different cases: (a) two extended sources, (b) two sources with time dependence, and (c) two point-like sources

in medium with a reflecting boundary. In these three cases, we used the same coordinates and amplitudes for S 1 and S 2,

and the same geometry of the detectors and the medium parameters as in the case of point-like sources in infinite medium

already presented in the text. The combination of Silhouette width cut-off with the AIC criterion produced accurate results

for estimating the unknown number (two for each of these three cases) of sources. The behavior of the average reconstruc-

tion errors and the average Silhouette widths in each of these three cases is almost identical to that presented in Fig. 4 and

these results are not shown here. The true and calculated parameters of the sources of the three cases are given in Table 3 .

From the values listed in the table, it can be seen that the HNMF method is remarkably accurate in these specific cases and

the errors are again within ∼ 2% of their true values. The estimated values of the parameters of the medium, u x , D x , and

D y , are again within couple percents of their true values. 
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Fig. 6. Lines show the mixtures generated from the exact solutions at the detectors D 1, D 2, D 3, D 4 for the three cases with two sources and four detectors. 

The observations reconstructed by HNMF method are shown with different markers in the same colors as the data. 

 

 

 

 

 

 

 

 

 

 

 

First we consider the two sources, S 1 and S 2, to be instantaneous but to have finite sizes. Assuming constant source

strength densities, and square shapes of the sources, the integral in (7) can be done analytically: 

C(x , t) = 

N s ∑ 

s =1 

q s 

∫ x s + d s 

x s −d s 

∫ y s + d s 

y s −d s 

d x ′ d y ′ G (x − x 

′ , t − t 0 ) 

= 

N s ∑ 

s =1 

q s 

4 

[
erfc 

(
x − x s + d s − u x t 

2 

√ 

D x t 

)
− erfc 

(
x − x s − d s − u x t 

2 

√ 

D x t 

)]

×
[ 

erfc 

( 

y − y s + d s 

2 

√ 

D y t 

) 

− erfc 

( 

y − y s − d s 

2 

√ 

D y t 

) ] 

. (16) 

Here q s is the source strength density, for a source centered at ( x s , y s ) with size 2 d s × 2 d s acting at t = t 0 . The position and

extend of each source is specified by three unknown parameters ( x s , y s , d s ), versus two for a point-like source. For the sizes

of the squares for plumes S 1 and S 2 we used 0.2 and 0.1. HNMF estimated these to be 0.203 and 0.108, respectively. 

Next, we consider S 1 and S 2 to be point-like sources that work continuously since the initial time t 0 . In this case the

integrals in (7) , 

C(x , t) = 

N s ∑ 

s =1 

q s 

∫ 
dt ′ G (x − x 

′ , t − t ′ ) , (17) 

has to be calculated numerically. Above, G (x − x ′ , t − t ′ ) is the standard instantaneous Green’s function given in (5) . 

Finally, we consider S 1 and S 2 to be point-like sources in a 2D medium with a reflecting boundary. The Green’s function

for (4) is well-known [38] , and can be written (for 0 ≤ y ≤ ∞ ) as: 

G (x , t) = 

1 

4 π
√ 

D x D y t 
e −

(x −x s −u x t) 
2 

4 D x t (e 
− (y −y s ) 

2 

4 D y t + e 
− (y + y s ) 2 

4 D y t ) , (18) 

where x and y are the components of the vector x and t > 0. G ( x , t ) satisfies boundary condition: G | y −> + ∞ 

= 0 and ∂ G/∂ y | y =0 
=

0 . The reflecting boundary along the plane at y = 0 in this case defined the top of the aquifer (domain) where the flow

occurs. Typically, the top of the aquifer is defined by either water-table or confining hydrogeologic strata. 

In Fig. 6 we present the generated mixtures and their reconstructions by HNMF for the three cases with two sources

S 1, S 2: (a) extended instantaneous sources, (b) point-like continuous sources and (c) point-like instantaneous sources in a

bounded media. 

5. Conclusions 

In this work we presented a new hybrid method, HNMF, that couples machine-learning algorithms with an inverse-

analysis technique. The goal of the method is the identification of an unknown number of release sources of particles or
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energy based on spatiotemporal distributed set of observations. HNMF uses the explicit form of the Green’s function of the

governing partial differential equation, combined with Non-negative Matrix Factorization, a custom clustering algorithm, and

an iterative non-linear least-squares minimization procedure. In the paper, HNMF is applied for identification of contaminant

sources and model parameters. To test the method, we generated several synthetic datasets, representing measurements

recorded at a set of monitoring wells, and describing mixtures of unknown contaminant sources in an aquifer. It is assumed

that each source is releasing the same geochemical constituent, mixed in the aquifer, and the resultant mixture is detected at

the observation points. Using only the observations, HNMF correctly unmixed the contamination plumes from the mixtures

observed in the monitoring wells. Based on this unmixing, the method accurately identified the number and the locations

of the sources, as well as the properties of the contaminant migration through the flow medium (advection velocity and

dispersion coefficients). 

To address the basic under-determinacy in the inverse problem – the unknown number of sources – HNMF explores the

plausible inverse solutions and seeks to narrow the set of possibilities by estimating the optimal number of contaminant

source signals that robustly and accurately reconstruct the available data. This allows us to estimate the number of contam-

inant sources, and determine their locations and strengths, as well as several important parameters of the medium such as

dispersivity and advection velocity. Future work will include the application of the HNMF to a real-world data as well as

probabilistic analyses of the uncertainty associated with the solutions identified by HNMF. 

Here we have concentrated on only one (albeit very important) application of HNMF – the problem of groundwater

contamination. However, there are numerous fields in which this method could be useful, since many diverse phenomena,

such as heat flow, infectious disease transmission, population dynamics, spreading chemical/biochemical substances in the

atmosphere, and many others, can be modeled by the advection–diffusion equation. In general, the HNMF method pre-

sented here can be applied directly to any problem that is subject to the partial-differential advection–diffusion equation,

where mixtures of an unknown number of physical sources are monitored at multiple locations. More generally, the HNMF

approach can be also applied to a whole set of different processes with distinct Green’s functions; for example, Green’s

function representing anomalous (non-Fickian) dispersion [37] or wave propagation in dispersive media. An open source

Matlab implementation of HNMF method, that can be used for identification of a relatively small number of signals, can be

found at: https://github.com/rNMF/HNMF . Finally, HNMF is a part of the submitted “Source Identification by Non-negative

Matrix Factorization Combined with Semi-Supervised Clustering,” U.S. Provisional Patent App.No.62/381,486, filed by LANL

on 30 August 2016. 
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